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Abstract
Establishing the difficulty of test items is an
essential part of the language assessment de-
velopment process. However, traditional item
calibration methods are often time-consuming
and difficult to scale. To address this, recent
research has explored natural language process-
ing (NLP) approaches for automatically pre-
dicting item difficulty from text. This paper
investigates the use of transformer models to
predict the difficulty of second language (L2)
English vocabulary test items that have mul-
tilingual prompts. We introduce an extended
version of the British Council’s Knowledge-
based Vocabulary Lists (KVL) dataset, contain-
ing 6,768 English words paired with difficulty
scores and question prompts written in Span-
ish, German, and Mandarin Chinese. Using
this new dataset for fine-tuning, we explore
various transformer-based architectures. Our
findings show that a multilingual model jointly
trained on all L1 subsets of the KVL achieve
the best results, with analysis suggesting that
the model is able to learn global patterns of
cross-linguistic influence on target word diffi-
culty. This study establishes a foundation for
NLP-based item difficulty estimation using the
KVL dataset, providing actionable insights for
developing multilingual test items.

1 Introduction

Calibrating the difficulty of test items is a core as-
pect of language assessment design, ensuring that
tests are fair, consistent, and aligned with learner
proficiency. Traditionally, this calibration relies
on pre-testing large item samples or expert judg-
ment, which are expensive and time-consuming.
Consequently, there is an increasing interest in au-
tomating item calibration using machine learning
methods (Yancey et al., 2024; Yaneva et al., 2024),
which offer greater scalability, efficiency, and con-
sistency, and can be more easily integrated into
item development pipelines.

While transformer-based encoder models such as
BERT (Devlin et al., 2019) have been successfully
applied to question difficulty estimation from text
(QDET) in domains related to content knowledge
assessment, approaches in language assessment —
where difficulty is more closely tied to the linguistic
properties of the item — still largely rely on hand-
crafted features (AlKhuzaey et al., 2024). This is
particularly true in QDET for L2 English vocabu-
lary items, which commonly rely on small datasets
that are not suitable for fine-tuning transformers
(Benedetto et al., 2023).

To address this gap, our paper introduces a new
multilingual resource for vocabulary QDET: an ex-
tended version of the British Council’s Knowledge-
based Vocabulary Lists (KVL), containing 6,768
English vocabulary items paired with difficulty
scores and prompts in Spanish, German, and Man-
darin Chinese. We use the KVL to fine-tune vari-
ous transformer-based architectures for vocabulary
test item difficulty prediction, leveraging its unique
structure to provide insights on how best to model
vocabulary difficulty in multilingual settings. Our
exploratory work serves as a benchmark for future
development of generalisable, L1-agnostic models
for explainable item calibration.

Our paper begins with an overview of how the
KVL has been extended and adapted for NLP-
based applications. This is followed by a sum-
mary of the latest research in two domains that
this study intersects: question difficulty estima-
tion from text and lexical complexity prediction.
Next, we outline the aims of the study, providing
the motivation and context for the experimental
design. The transformer-based architectures that
we investigated are outlined, including the proce-
dures followed for model selection and fine-tuning.
We present findings from model performance eval-
uations, an ablation study and an error analysis.
Finally, the paper ends with a discussion of the
results and outlines directions for future work.



2 The Knowledge-based Vocabulary Lists

The Knowledge-based Vocabulary Lists (KVL)
(Schmitt et al., 2021, 2024) were the outcome of a
collaborative research project between the British
Council and researchers from the University of Not-
tingham, University of Innsbruck and Waseda Uni-
versity. Productive English language word knowl-
edge was assessed using prompts designed to test
form-based recall of individual lemmas in a transla-
tion format (cf. Laufer and Goldstein, 2004). Items
comprising an L1 translation of the English target
word, plus contextualising sentences were devel-
oped separately in three L1s (Mandarin Chinese,
German, Spanish) to create a bank of 7,679 items
for each language. Participants were required to
input the remainder of the word in English, as per
this example from the Spanish language version1:

casa Vivo en una casa grande que tiene tres
dormitorios.
h _ _ _ _

During a period between late-2018 to mid-2020,
3.3 million responses were collected from over
100,000 respondents via crowdsourcing. An on-
line platform, promoted across the British Coun-
cil’s social media channels, presented participants
with blocks of ten random items stratified by target
word frequency. Feedback was given after each
block, and participants were encouraged to com-
plete more items to “beat their best”, as an example
of game-based data collection (Kim et al., 2024).

Difficulty estimates were derived separately for
each L1 subset of the data, using random-item-
random-person (RPRI) Rasch models (De Boeck,
2008) built within a generalised linear mixed model
(GLMM) framework (Dunn, 2024). Original KVL
project outputs used these estimates to create a
rank-order list of the top 5,000 words for each L1.

For this research, we use the existing 5000 items
in the KVL and publicly release an additional
1,768 English vocabulary test items for each L1.
This extended dataset contains 20,304 items in
total (6,768 per L1) and is divided into 80% train
(16,242 items), 10% development (2,031 items)
and 10% test (2,031 items) sets2.

1The German and Chinese versions had similar, yet distinct
prompts, for example in German: “Haus Ich wohne in
einem Haus mit Garten.” And in Chinese: “房子 我买了
一座房子。”

2https://www.britishcouncil.org/data-science-and-
insights/resources

3 Related Work

3.1 Question Difficulty Estimation from Text
Question difficulty estimation from text (QDET)
concerns the prediction of test item difficulty based
solely on its textual features. There is growing in-
terest in using QDET for high stakes assessment
calibration, given its efficiency and scalability com-
pared to traditional methods (AlKhuzaey et al.,
2024). The majority of work in this area explores
supervised approaches to QDET, with transformer-
based encoder models achieving the best results in
recent years (Gombert et al., 2024; Yaneva et al.,
2024). There is also a growing interest in unsu-
pervised approaches to the task, using generative
models as ‘test-takers’, extracting their uncertainty
as a proxy for human difficulty (Loginova et al.,
2021; Uto et al., 2024; Zotos et al., 2025).

Research related to vocabulary-based QDET,
however, is relatively limited. Most prior ap-
proaches to this task use hand-crafted linguistic
features (such as word frequency and word length)
as inputs to predictive models (Suyong and Hua,
2018; Settles et al., 2020), with other approaches in-
corporating embeddings such as word2vec (Ehara,
2018) and GloVe (Susanti et al., 2020). Beyond
word-based features, contextual factors such as the
similarity between correct answers and distractors
in multiple choice vocabulary tests (Susanti et al.,
2017, 2020) as well as semantic descriptors from
dictionary entries of target words (Nakanishi et al.,
2012), have also had limited exploration.

3.2 Lexical Complexity Prediction
Lexical complexity prediction (LCP) is a subfield
of complex word identification (CWI), which con-
cerns the automatic detection of complex words
from text, primarily for the purpose of text sim-
plification. LCP extends the binary classification
used for CWI to form a regression problem, with
the goal of predicting a continuous ‘complexity’
value for a given word. These values are domain-
specific, and can range from crowd-sourced per-
ceived complexity ratings to morphosyntactically
derived features (North et al., 2023). Different
to vocabulary QDET, the input text used for LCP
typically involves predicting the complexity of a
word in context. Given the format of the KVL
dataset, the task of LCP aligns more closely with
our investigation than much of the previous work
in vocabulary QDET.

https://www.britishcouncil.org/data-science-and-insights/resources
https://www.britishcouncil.org/data-science-and-insights/resources


The most successful approaches to LCP to
date make use of transformer-based architectures
(Bani Yaseen et al., 2021; Kelious et al., 2024a).
Particularly relevant to this work, however, are in-
vestigations into multilingual applications of LCP.
Sheang (2019) showed that a multilingual CNN
model trained jointly on word embeddings and lin-
guistic features of Spanish, German and English
datasets led to improved performance of prior mod-
els for Spanish and German. Similarly, Finnimore
et al. (2019) found that jointly training models with
languages from the same family improved cross-
lingual CWI. Zaharia et al. (2020) experimented
with multilingual transformers for cross-lingual
CWI, showing that XLM-RoBERTa performs best
for unseen German or French target words. More
recently, LLMs have been explored for unsuper-
vised multilingual LCP, however these approaches
did not outperform supervised transformer-based
equivalents (Kelious et al., 2024b).

4 Research aims

As described above, the KVL dataset is unique in
that it contains multilingual test items (comprising
L1 source word, L1 context and EN clue) for the
same set of English target words across three L1s.
To explore this multi-faceted structure, we defined
four transformer-based models for experimentation:
(1) individual monolingual models for each test
item component; (2) ensembles combining these
component-specific models; (3) multilingual mod-
els fine-tuned on the full test item text separately
for each L1; and (4) a single multilingual model
trained on the full test item text across all L1s.

Comparing the performance of these models al-
lowed for multiple avenues of investigation: the
influence of test item components on model pre-
dictions, the suitability of monolingual versus mul-
tilingual models and training data, as well as the
effectiveness of different architectures for captur-
ing cross-component and cross-lingual interactions
within items. In addition to overall model perfor-
mance, we were also interested in whether model
error revealed potential biases—such as systematic
under- or overestimation for particular items. These
areas of interest were distilled into three primary
research questions for the study:

• How accurately can different transformer-
based model architectures predict vocabulary
item difficulty for the KVL dataset?

• How do the individual components of the test
item contribute to the models’ predictions?

• Is there any systematic bias contributing to
errors in the best-performing model?

5 Modelling setup

Item difficulty prediction was modelled as a regres-
sion task. The target values for prediction were
transformations of the GLMM item-level condi-
tional modes. These were inversed to reflect item
difficulty (as opposed to ‘item easiness’ in the orig-
inal study) and scaled to values between zero and
one. Models were fine-tuned with mean squared
error (MSE) as the loss function. As the KVL
were originally designed for ranking vocabulary
difficulty, Spearman’s rank correlation coefficient
(RHO) was used as the main model evaluation met-
ric. The root mean squared error (RMSE) metric
was also calculated to evaluate model fit. Where
relevant, statistical significance tests of the models
were carried out via bootstrap, using 10,000 iter-
ations and Bias-Corrected and Accelerated (BCa)
intervals (Efron, 1987).

For the multilingual models, the structure of the
input text begins with the question content (L1
source word, L1 context, EN clue), in the same
order as it is presented in the vocabulary test items,
followed by the target answer (EN target word).
Each part of the input text was delineated with the
models’ pre-defined separation token, as shown in
the example input text below:

casa [SEP] Vivo en una casa grande que
tiene tres dormitorios. [SEP] h____
[SEP] house

For the ensemble models, each part of the text
was processed and tokenised separately.

5.1 Model architectures

Figure 1 provides an overview of the different archi-
tectures explored for this study. For the individual
monolingual models and multilingual models, the
768-dimensional embedding of the first token (<s>
for RoBERTa-based models and [CLS] for BERT-
based models) from the final hidden layer is passed
through a dropout layer followed by a single linear
layer (the regression head) to predict the difficulty
score. For the monolingual ensemble models, the
predictions from the individual component models
are stacked together and passed through a Ridge re-



(a) Individual component models

(b) Ensemble of monolingual models

(c) Multilingual model

Figure 1: Model architectures for transformer-based
approaches.

gression model. Each L1-specific ensemble learns
a distinct weighting scheme for the predictions.

5.2 Model selection

Multiple pre-trained transformer models avail-
able through the Hugging Face platform3 were
considered for use in the architectures explored
in this research. Preliminary model evaluation
was carried out in order to select the best model
for each of the architectures. Using a fixed set
of hyperparameters, candidate models for each of
the architectures described above were evaluated.
The models were fine-tuned with the train set,
and tested with the development set, reporting the

3https://www.huggingface.co

RMSE and RHO of the predictions for the best
model after five epochs. From this investigation,
the following models were selected for further
experimentation (see Table A.2 in the Appendix
for results for all candidate models):

Multilingual model: XLM-RoBERTa (Con-
neau et al., 2020) is pre-trained on text from
100 languages using a large-scale CommonCrawl-
based corpus. It employs SentencePiece tokenisa-
tion and is trained with a masked language mod-
elling (MLM) objective. XLM-RoBERTa has
been shown to outperform other multilingual trans-
former models in multiple NLP tasks, including
cross-lingual complex word identification (Zaharia
et al., 2020).

Monolingual English models: BERT (Devlin
et al., 2019) is pre-trained on English text from
BooksCorpus and Wikipedia using a WordPiece
tokeniser. It learns contextualised word representa-
tions through masked language modelling (MLM)
and next sentence prediction (NSP).

Monolingual L1 models: BERT models pre-
trained for Spanish4 (Cañete et al., 2020), German5

(Chan et al., 2020) and Chinese6 (Devlin et al.,
2019). These models follow the BERT architecture
and are pre-trained using equivalent L1 texts. For
consistency, where relevant we use the cased, base
model versions of each of the models listed above.

5.3 Model fine-tuning

Each of the models selected for experimentation
was tuned for optimal hyperparameters. With a
batch size fixed at 32 and dropout rate set to model
defaults (0.1 for all models), Optuna7, a hyperpa-
rameter optimisation framework for Python, was
used to search for the best learning rate, weight de-
cay and warm up ratio for each of the models. The
models were fine-tuned with the train set, and evalu-
ated with the development set, reporting the RMSE
and RHO of the predictions for the best model after
five epochs. See Table A.3 in the Appendix for the
best hyperparameters for each model.

Using the optimised hyperparameters, four
sets of models were fine-tuned on the train and
development sets and evaluated on the test set.
These included: (1) individual models for each test
item component (L1 source word, L1 context, EN

4https://huggingface.co/dccuchile/bert-base-spanish-
wwm-cased

5https://huggingface.co/deepset/gbert-base
6https://huggingface.co/google-bert/bert-base-chinese
7https://optuna.readthedocs.io/en/

https://www.huggingface.co
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://huggingface.co/deepset/gbert-base
https://huggingface.co/google-bert/bert-base-chinese
https://optuna.readthedocs.io/en/stable/


Model ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

L1 source word 0.156 0.522 0.142 0.565 0.130 0.561 0.143 0.550
L1 context 0.168 0.432 0.159 0.424 0.137 0.507 0.155 0.455
EN clue 0.169 0.400 0.155 0.389 0.139 0.477 0.154 0.422
EN target word 0.145 0.633 0.135 0.625 0.111 0.727 0.130 0.661

Table 1: RMSE and Spearman’s Rho for individual component models evaluated on the KVL test set.

Model ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

EN target word 0.145 0.633 0.135 0.625 0.111 0.727 0.130 0.661
Monolingual ensemble 0.142 0.646 0.129* 0.651 0.106* 0.747* 0.126 0.681
Multilingual (L1-specific) 0.126* 0.734* 0.116* 0.776* 0.108 0.725 0.117 0.745
Multilingual (all-in-one) 0.116* 0.775* 0.108* 0.793 0.097* 0.785* 0.107 0.785
*Statistically significant improvement in performance compared to the prior model in the table. Significance testing was
not applied to L1 average results.

Table 2: RMSE and Spearman’s Rho results for the transformer-based architectures evaluated on the KVL test set.

clue, and EN target word), fine-tuned separately
for each L1 subset; (2) monolingual ensembles
fine-tuned per L1 subset; (3) multilingual models
fine-tuned per L1 subset (L1-specific); and (4) an
‘all-in-one’ multilingual model fine-tuned on all
L1 subsets combined.

6 Results

6.1 Model performance
Table 1 reports the individual models’ performance
for each test item component. The EN target word
model yields the highest scores across all L1s for
both RMSE and RHO, and is particularly high for
the Chinese subset, with a RHO of 0.73. Overall,
the next best predictor is the L1 word (average
correlation: 0.55), followed by L1 context (0.46)
and EN clue (0.42).

Table 2 presents results for the monolingual en-
semble8, L1-specific multilingual and all-in-one
multilingual models evaluated on the KVL test set,
alongside the individual EN target word model serv-
ing as a baseline. Results marked with an asterisk
showed significant improvement in performance
compared to the prior model in the table. On av-
erage, the ensemble architecture offers a small im-
provement in performance over the EN target word
model for both RMSE and RHO, however the in-
crease is not statistically significant for either met-
ric in the ES subset, and not significant for RHO

8The learned Ridge regression weights for each component
model in the ensembles can be found in Table A.1 in the
Appendix.

in the DE subset. The L1-specific model consider-
ably outperforms the ensemble approach for the ES
and DE subsets, with RHO increasing from 0.65 to
0.73 and 0.78, respectively. This performance in-
crease is not seen for the CN subset, which shows a
marginally poorer but non-significant performance
difference for RMSE and RHO. The all-in-one
model achieves the best L1 average performance
in both RMSE and RHO as well as demonstrat-
ing the most consistent RHO across L1 subsets,
with scores of 0.78 for ES, 0.79 for DE, and 0.79
for CN. For the DE subset, however, this perfor-
mance increase is not significantly higher than the
L1-specific model for RHO.

6.2 Influence of test item component

An ablation study of the test item components was
conducted for the ensemble, L1-specific and all-in-
one models. Single components were systemati-
cally removed from the models, in order to inves-
tigate their influence on model performance. The
models were fine-tuned using the train and devel-
opment set and evaluated on the test set. The full
model results for RMSE and RHO coefficients with
statistical significance are reported in Table A.4 in
the Appendix.

Figure 2 reports the relative percentage change in
RHO for each of the models after removing individ-
ual components, across the L1 subsets. Statistically
significant differences in model performance are
marked with an asterisk. For the monolingual en-
semble models, we can see that removing the EN
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Figure 2: Relative percentage change in Spearman’s Rho after individual component removal.

target word results in the largest decrease in perfor-
mance – around 10% for ES and DE and 15% for
the CN subset. The removal of other components
have no statistically significant impact, with the
exception of the DE subset which shows a small
5% degradation for the L1 word.

For the L1-specific models, we can see a more
varied distribution of impact for each of the com-
ponents. Statistically significant degradation of
performance is seen in all three L1s for L1 context,
ES and DE for L1 word and DE and CN for the
EN clue. The results for the EN target word in the
CN subset are notably different to those of the ES
and DE, with a much lower degradation in perfor-
mance after its removal (around 7%, compared to
between 20-25% for DE and ES, respectively). The
EN clue is in fact more impactful than the EN word
in this case, showing a statistically significant 9%
reduction in performance after its removal.

Looking to the all-in-one multilingual model, we
can see that the ablation results begin to generalise,
showing a similar pattern of impact across the L1
subsets. Results from the statistical significance
tests show that removing the EN clue had no signif-
icant impact on the all-in-one model performance
for any of the L1 subsets, and the removal of the
L1 word has no significant impact on model perfor-
mance for the ES and CN subsets.

6.3 Error analysis

Figure 3 shows the model residuals plotted against
the difficulty values for each L1 subset tested on
the best performing model, the all-in-one multilin-
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Figure 3: Error plot for the all-in-one multilingual
model across L1s.

gual model. The graph shows that the majority of
predictions fall within a range of -0.2 and +0.2 of
the difficulty values. Across all L1 subsets, the
model tends to underestimate the difficulty of test
items as vocabulary item difficulty increases. This
pattern becomes more pronounced for items with
difficulty values of approximately 0.6 and above.
The extent to which these higher difficulty values
are impacted needs to be interpreted with caution.
First of all, the GLMM difficulty estimates that
the model was trained on have their own degree of
error; see Schmitt et al. (2024) for further details.
In addition, the fact that the GLMM scores were
scaled linearly to values between 0 and 1 may also



Figure 4: Example SHAP output for the ES test item for the EN target word "bar" (verb).

impact the distribution of the difficulty values at
the low and high end of the scale.

In order to investigate the token-level contribu-
tions of the input text to the model predictions,
further analysis using SHAP (SHapley Additive ex-
Planations) (Lundberg and Lee, 2017) was carried
out. SHAP is a python package 9 that assigns Shap-
ley values – a game-theoretic attribution metric – to
features of a given predictive model. When apply-
ing SHAP to transformer architectures, each token
of the input text is treated as an individual feature,
affording the investigation of specific words or sub-
word units within the sequence. In our application,
this allows for fine-grained interpretability of how
tokens within different components of the input
text contribute to the model’s final prediction.

For each L1 subset of the KVL test data, the top
10% of model errors (68 vocabulary test items per
L1) were individually inspected using SHAP. For
each item text, the token that contributed the most
to the incorrect prediction was recorded, along with
which component it was part of. Figure 4 provides
an example of the SHAP analysis output for the ES
item text for the English target word “bar” (verb).
All tokens highlighted in red in the figure contribute
to increasing the model’s prediction (towards diffi-
cult) and all tokens highlighted in blue contribute
to decreasing the model’s prediction (towards easy).
For this example, the model predicted the item to
be too easy (prediction = 0.52, label = 0.93, error
= -0.41). On inspecting the SHAP output, we can
see that the EN target word “bar” is the token that
contributes the most to the erroneous prediction.

Figure 5 shows the component and prediction
direction of the tokens identified in the analysis
procedure described above. Reflecting the general
tendency of the model predictions reported in Fig-
ure 3, there was a higher proportion of ‘too-easy’
predictions (57% of errors investigated). Tokens
identified in the EN target word component account
for 44% of the items investigated, followed by
tokens in the L1 context (25%), L1 word (14%) and
EN clue (7%). The separation token <\s> was also
identified as containing the top contributing token

9https://shap.readthedocs.io/en/latest/index.html
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Figure 5: Location of the most influential tokens at-
tributed to the top 10% of model errors.

for 8% of the errors (see Table A.5 in the Appendix
for an overview of all identified tokens). On in-
specting the tokens, some global patterns emerged.

• Simple vs. complex words in the L1 word
and L1 context. For items that the model pre-
dicted as too easy, simple or common words
were often given high attributions. For exam-
ple, pronouns:“ich” (I), “我” (I), “mich” (me),
or every day words: “饭” (meal), “heute” (to-
day), “noche” (night). For items that were
predicted too difficult, attribution tended to be
given to more complex words such as “pre-
cisar” (specify) and “排放” (emission).

• Sub-word tokenization in EN word. For
items that the model predicted as too easy,
the sub-word with the highest attribution
was often a simpler or more common word
nested within the target word, for exam-
ple with the compound nouns “bookcase”,
“sunshine” and “workday”. For items that
were predicted too difficult, words were often
split into non-morphologically aligned sub-
tokens: “poison”, “fireman”, “killer”, or suf-
fixes: “questionable”, “punishment”.

https://shap.readthedocs.io/en/latest/index.html


• Difficult senses in EN target word. Whole
EN target words accounted for 26% of all
items that were predicted too easy, compared
to only 8% for items predicted as too diffi-
cult. Common features of these EN target
words were difficult senses (e.g. “short” as an
adverb, “bar” as a verb), cognates with low
frequency (e.g. “crystal”, “tragic”), or avoid-
ing cognates in L1 source word (e.g. using
“rastrear” instead of “explorar” for EN target
word “explore”).

7 Discussion

The experiments and analysis detailed above ex-
plored L2 English vocabulary test item difficulty
prediction using transformer-based architectures,
with a view to establishing: (1) the best model for
prediction; (2) the relative importance of test item
components; and (3) potential areas of systematic
bias in the best model. The outcomes of these aims
are discussed below.

Initial results from fine-tuning individual com-
ponent models highlighted the predictive strength
of each component in isolation, with the EN target
word input emerging as the most effective stan-
dalone predictor. These findings align with prior
work in QDET for vocabulary testing, which has
shown that features based solely on the English
target word can yield a strong performance (Suy-
ong and Hua, 2018; Ehara, 2018; Settles et al.,
2020). The English target word model performed
especially well on the Chinese subset, achieving a
RHO of 0.73, compared to 0.63 for both Spanish
and German. This may reflect the inconsistent role
of cognateness in shaping word difficulty: while
Spanish and German learners may be influenced
by cognates or “false friends" (Otwinowska and
Szewczyk, 2019), English word difficulty for Chi-
nese learners—whose L1 shares no cognates with
English—may be more directly linked to features
solely attributed to the English word. As a result,
the relationship between the English target word
and item difficulty may be easier to model for the
Chinese subset of the KVL. A similar pattern was
observed by Schmitt et al. (2024) in their analysis
of the KVL, where GLMM difficulty scores for the
Chinese subset correlated more strongly with word
frequency –a feature often used as a proxy for word
difficulty (Hashimoto and Egbert, 2019)– than they
did for Spanish and German.

Although the monolingual ensemble models
showed limited improvement over the simpler En-

glish target word models, there may be some set-
tings where this architecture is a suitable choice.
Given the statistically significant improvement seen
for the ensemble model fine-tuned with the Chinese
subset, it may be that this approach is better suited
to non-cognate language pairs where cross-lingual
interaction does not play an important role in de-
termining item difficulty. Furthermore, the ensem-
ble model weights can be used as a simple proxy
for component importance, offering an efficient,
broader view of component relevance that may be
more practically applicable for test item piloting.
However, for scenarios similar to this study, in a
multilingual setting with target words and context,
our results suggest that a unified multilingual trans-
former architecture is the best choice. These find-
ings align with prior research in multilingual LCP,
which highlight the benefits of including sentence
context (Bani Yaseen et al., 2021; Kelious et al.,
2024a) as well as the joint modelling of different
L1s (Zaharia et al., 2020).

Findings from the ablation study highlighted the
advantage of cross-component representation learn-
ing within a unified transformer architecture and
revealed interesting insights into the impact of fine-
tuning on all L1s. Results showed that in the L1-
specific approach, the model fine-tuned for Chinese
assigns less importance to the English target word
input compared to its Spanish and German coun-
terparts. This is somewhat unexpected, given the
very strong performance of the English target word
model for Chinese shown in Table 2. One possible
explanation is that the L1-specific model fine-tuned
on the Chinese subset is less able to align repre-
sentations of English and Chinese source words
due to the lack of script overlap. This is reflected
in prior research showing that multilingual mod-
els benefit from shared subword representations
across languages, and that subword overlap corre-
lates with cross-lingual transfer performance (Wu
and Dredze, 2019; Pires et al., 2019). In the case
of Chinese, the absence of shared subwords with
English may limit the model’s ability to learn cross-
lingual connections. This may be a contributing
factor as to why there is no significant improvement
in the L1-specific model compared to the ensemble
approach for the Chinese subset.

Building on this idea, the ablation results for
the all-in-one multilingual model were much more
consistent across L1 subsets. The observed gen-
eralisation suggests that the all-in-one model may
be learning broader, language-independent features



of vocabulary item difficulty compared to the L1-
specific and ensemble models. The parallel struc-
ture of the KVL dataset, where each of the English
target word and clue appears across three different
L1s, likely supports this generalisation by encour-
aging the model to disentangle language- and item-
specific features from global patterns. Furthermore,
the distribution of component impact for the Chi-
nese subset of the L1-specific model reported in
Figure 2 shifts considerably toward the Spanish and
German distributions seen in the all-in-one model.
This may be an indication that the limitations of
cross-lingual transfer for orthographically distant
language pairs described above are alleviated in this
setting when models are fine-tuned jointly across
languages with parallel data.

Findings from the error analysis revealed valu-
able insights about the systematic behaviour of the
all-in-one multilingual model. In addition to the
effects of label re-scaling and GLMM model error
discussed in Section 6.3, the normal distribution
of difficulty values in the KVL dataset may fur-
ther contribute to the all-in-one model’s tendency
to under-predict higher difficulty items. To test
this, it would be of value to investigate the impact
of including a larger proportion of high difficulty
items during fine-tuning. This could be achieved
using data-augmentation or re-sampling methods
(Pan et al., 2021; Kelious et al., 2024b), or even the
development of further KVL test items.

The small-scale SHAP analysis on the multilin-
gual model’s top 10% of errors, provided some gen-
eral observations that can be applied to the future
development of knowledge-based vocabulary lists,
and test item writing more generally. In particular,
the findings illustrated the impact of vocabulary
complexity in the L1 word and L1 context com-
ponents, suggesting that careful consideration of
the word choices in the item text is needed when
creating such resources for the NLP domain. Is-
sues from the SHAP analysis that emerged relating
to model behaviour, such as non-morphologically
aligned sub-word tokenization and poor word sense
disambiguation provide direction for improving the
all-in-one model, such as multi-task learning with
POS-tagging, morphological supervision or cross-
lingual word sense disambiguation. Finally, given
the limited scope of the SHAP-based analysis, in-
terpretations are isolated to the individual word
and subword level. Further investigation into the
model’s attention across tokens may be able to pro-
vide richer insight into the model behaviour.

8 Future Work

In addition to the suggestions outlined in the dis-
cussion above, there are several further avenues for
future work. First, model probing for features previ-
ously found to be predictive of vocabulary item dif-
ficulty (Dunn, 2024; Hashimoto and Egbert, 2019)
could help explore the item text beyond the com-
ponent level, to uncover which linguistic correlates
of item difficulty are being captured by the models.
The all-in-one multilingual model could be further
optimised by incorporating architectural adapta-
tions shown to benefit QDET and LCP in other
domains, such as scalar mixing (Gombert et al.,
2024) or concatenating transformer embeddings
with linguistically derived features (AlKhuzaey
et al., 2024; North et al., 2023). Given the require-
ment of large amounts of training data for encoder-
based transformer approaches, it would also be
of value to compare the all-in-one model results
to zero-shot and few-shot methods using LLMs,
such as those recently investigated by Smădu et al.
(2024). Finally, expanding the KVL dataset to in-
clude additional L1 subsets, especially those ortho-
graphically distant from English, will contribute to
further exploring the role of cross-lingual transfer
within multilingual transformer models, helping to
corroborate the findings of this research.

9 Conclusion

This research investigated the use of transformer-
based architectures for predicting vocabulary item
difficulty, applying recent advances in multilingual
and cross-lingual lexical complexity prediction to
question difficulty estimation. Leveraging the con-
tent and structure of the KVL dataset—which has
not previously been used in NLP research—this
study examined the effects of multilingual text
items across several transformer-based architec-
tures. The analysis provided insights into the
relative importance of different test item com-
ponents across L1s, revealing how these models
capture and generalise features of item difficulty. In
particular, a multilingual model fine-tuned on data
with all L1 variations demonstrated the strongest
performance, benefiting from cross-lingual transfer
and the parallel structure of the KVL dataset to pro-
duce more generalised and consistent attributions
across L1s. These findings point to the potential
of L1-agnostic, explainable transformer-based
models for supporting test development pipelines
through scalable and interpretable item calibration.



Limitations

One limitation of our study is the use of the proba-
bilistic values derived from the GLMM framework
as observed difficulty values, an issue that is dis-
cussed in more detail by Schmitt et al. (2024). To
address this, we used a non-parametric correlation
measure (Spearman’s Rho) to evaluate our mod-
els based on rank ordering. This approach helps
account for the potential error in the precision of es-
timates that might not be fully captured by RMSE.

Another limitation that is specific to the all-in-
one multilingual model lies in the way training
data was combined across L1s. The GLMM dif-
ficulty values used as labels in the models were
derived from different population samples for each
L1, which could raise questions about the compara-
bility of these values across languages. To mitigate
this, target labels were derived by concatenating the
individually scaled subsets rather than applying a
single normalisation across the entire KVL dataset.
While this approach preserves the internal struc-
ture of each L1 subset difficulty scores, it does not
fully account for differences in score distribution
origins. However, given that predictions improved
when the model was evaluated on individual L1
subsets, the all-in-one model can still be viewed as
a practical means of enhancing L1-specific perfor-
mance, rather than as a universal predictor of item
difficulty.
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A Appendix

Component model ES DE CN
L1 source word 14.97% 39.93% 23.93%
L1 context 18.80% 6.46% 13.94%
EN clue 5.69% 1.66% 0.00%
EN target word 60.54% 51.93% 62.13%

Table A.1: Ridge regression ensemble model weights across L1 subsets.

Input text Pre-trained ES DE CN L1 average
model RMSE Corr RMSE Corr RMSE Corr RMSE Corr

L1 context BERT-mono* 0.139 0.449 0.133 0.437 0.125 0.503 0.132 0.463
L1 context XLM-R 0.140 0.429 0.134 0.429 0.127 0.483 0.134 0.447
L1 context mBERT 0.141 0.416 0.135 0.412 0.128 0.451 0.135 0.426
L1 source word BERT-mono* 0.135 0.496 0.123 0.584 0.118 0.596 0.125 0.559
L1 source word XLM-R 0.149 0.376 0.132 0.486 0.119 0.555 0.133 0.472
L1 source word mBERT 0.142 0.409 0.129 0.506 0.119 0.543 0.130 0.486
EN clue BERT 0.144 0.365 0.139 0.358 0.131 0.396 0.138 0.373
EN clue RoBERTa 0.145 0.355 0.139 0.343 0.131 0.392 0.138 0.363
EN target word BERT 0.123 0.592 0.116 0.629 0.096 0.752 0.112 0.658
EN target word RoBERTa 0.134 0.513 0.133 0.506 0.110 0.624 0.126 0.548
All components XLM-R 0.103 0.761 0.099 0.777 0.088 0.800 0.097 0.779
All components mBERT 0.107 0.744 0.103 0.751 0.094 0.773 0.101 0.756
*BERT-mono refers to the monolingual models for each L1 outlined in Section 5.2. Hyperparameters were fixed at 2e-5
for learning rate, 0.1 for weight decay and 0.1 for warm up ratio.

Table A.2: RMSE and Spearman’s Rho for each of the transformer models considered for the final experiments.
Models were fine-tuned on the train set and evaluated on the development set.



Model name Input
language Input text Learning

rate
Weight
decay

Warmup
ratio

bert-base-spanish-wwm-cased ES L1 source word 3e-5 0 0.1
gbert-base DE L1 source word 2e-5 0 0.1
bert-base-chinese CN L1 source word 2e-5 0.1 0
bert-base-spanish-wwm-cased ES L1 context 3e-5 0 0.1
gbert-base DE L1 context 2e-5 0 0.1
bert-base-chinese CN L1 context 3e-5 0 0
bert-base-cased ES EN clue 2e-5 0.1 0.1
bert-base-cased DE EN clue 2e-5 0.1 0
bert-base-cased CN EN clue 3e-5 0 0
bert-base-cased ES EN target word 3e-5 0 0
bert-base-cased DE EN target word 1e-5 0 0.1
bert-base-cased CN EN target word 2e-5 0 0
xlm-roberta-base ES All components 3e-5 0.1 0.1
xlm-roberta-base DE All components 3e-5 0 0.1
xlm-roberta-base CN All components 3e-5 0.1 0.1
xlm-roberta-base XX All components 3e-5 0.1 0.1
Search space for hyperparameters: learning rate (1e-5, 2e-5, 3e-5), weight decay (0, 0.1), warm up ratio (0, 0.1).

Table A.3: Optuna hyperparameter results for the models selected for the final experimentation. Models were
fine-tuned on the train set and evaluated on the development set.

Full component model
- removed component

ES DE CN L1 average
RMSE RHO RMSE RHO RMSE RHO RMSE RHO

Ensemble 0.142 0.646 0.129 0.651 0.106 0.747 0.126 0.681
- L1 word 0.142 0.641 0.134* 0.620* 0.108 0.742 0.128 0.668
- L1 context 0.142 0.639 0.128 0.651 0.107 0.742 0.126 0.677
- EN clue 0.142 0.643 0.129 0.650 0.106 0.747 0.126 0.680
- EN word 0.155* 0.578* 0.138* 0.591* 0.122* 0.637* 0.138 0.602
L1-specific 0.126 0.734 0.116 0.776 0.108 0.725 0.117 0.745
- L1 word 0.133* 0.707* 0.122* 0.732* 0.110 0.732 0.122 0.724
- L1 context 0.129 0.711* 0.123* 0.717* 0.116* 0.681* 0.123 0.703
- EN clue 0.125 0.742 0.119 0.755* 0.119* 0.658* 0.121 0.718
- EN word 0.152* 0.545* 0.138* 0.614* 0.117* 0.674* 0.136 0.611
All-in-one 0.116 0.775 0.108 0.793 0.097 0.785 0.107 0.784
- L1 word 0.122* 0.756 0.112 0.770* 0.102* 0.769 0.112 0.765
- L1 context 0.138* 0.640* 0.126* 0.672* 0.114* 0.693* 0.126 0.668
- EN clue 0.121* 0.766 0.115* 0.783 0.101* 0.780 0.112 0.776
- EN word 0.151* 0.570* 0.139* 0.580* 0.123* 0.630* 0.138 0.593
*Statistically significant improvement in performance compared to the ‘full component’ models (as reported in
Table 2). Significance testing was not applied to L1 average results.

Table A.4: RMSE and Spearman’s Rho results for the ablation study models. Models were fine-tuned on the train
and development set, and evaluated on the test set.
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m___________
(masterpiece)
n________
(nominated)
n____ (nurse)
e________
(expensive)
t________
(terrorism)

b_____ (better)
n____ (nurse)
t______ (traffic)
q___ (quit)
p___ (plus)
m___________
(masterpiece)
r______ (reality)

o______
(olympic)
o_______
(oversize)
e__________
(examination)

E
N

ta
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w
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d

unity
bar
grand
jasmine
tragic
glow
grin
sunshine
explore
pasta
dominate
introduction
lyrics
recycled
tropics
recycling

short
bar
communicator
grand
forget
crystal
tragic
cheerful
vote
kangaroo
learned
boost
dominated
recipe
ecosystem
sitting
café
bookcase

bar
unity
grand
short
bookcase
stop
tried
glow
written
cheerful
gown
workday
recipe
learned
birth
tragic
cite
sweat

poison
quantity
memorable
excellent
falling
venture
incomplete
questionable
fireman
chorus
incoming

kidnapping
faceless
climate
questionable
incoming
balancing
guilt
definite
minority
established
breakout
poison
taking
climbing

chinese
relate
rely
killer
governmental
inexpensive
disorder
punishment
questionable
qualify
backward
antisocial
issue
fireman

*The associated EN target word for the EN clue component is included in brackets for interpretability. Within the
component groups, words are listed in order of largest to smallest model prediction error for their associated item.

Table A.5: The words and subwords (in bold) contributing to the top 10% of the all-in-one multilingual model
errors, according to SHAP analysis.
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