Indoor Localization and Applications
DAO Trung-Kien, CASTELLI Eric

Researcher Links
Ho Chi Minh city, Feb. 2014
MICA overview

- **Some numbers**
 - 4 profs, 18 doctors

- **Research axes**
 - Localization in indoor and complex environments
 - Location-based services
 - Image & video processing
 - Audio processing, speech recognition, natural language processing
 - Multimodal human-system interaction

- **Further information**
 - http://mica.edu.vn
 - http://mica.edu.vn/perso/kiendt
Outline

- Introduction
- Multimodal Localization
- Pervasive Application Platform
- Conclusion
Location-based services

- Information customization based on user location
- Human/robot navigation guidance
- Location-based resource allocation
- Location-based advertising
- Security surveillance, alert, notification, warning,…
- …
Indoor localization

- GPS generally works only outdoor ➔ search for indoor localization schemes

- Many approaches proposed for indoor localization: cellular networks, infrared, ultrasonic, computer vision, RFID…
 - All suffer either from the limited accuracy, range, lacking of the infrastructure, high deployment price,…
GPS, GALILEO

- **Principle:**
 - TOA \rightarrow distance to satellites
 - Least square solution

- **Accuracy:** 30m

- **Advantage:** global

- **Problems:**
 - Obstruction \rightarrow only outdoor
 - Multipath propagation
 - Signals weakened through atmosphere, walls, trees
RFID

- **Main approaches:**
 - Fixed readers, mobile tags
 - Fixed tags, mobile readers

- **Accuracy:** 1m

- **Problems:**
 - Proximity localization
 - Scalability
WiFi signals

- **Two main approaches:**
 - Geometrical calculation: angulation, lateration,…
 - Fingerprinting

- **Accuracy:** 5m

- **Advantage:**
 - No occlusion

- **Problems:**
 - Complex propagation characteristics (low stability)
 - Pre-deployment efforts required
Pedometer

- **Approach:**
 - Accelerometer
 - Pattern recognition

- **Advantage**
 - Self localization mechanism

- **Problems**
 - Additional orientation sensor required
 - Calibration needed
 - Inapplicable to robots
Cameras

- **Approach:**
 - Mobile or fixed camera

- **Advantage:**
 - High accuracy

- **Problems:**
 - User identification
 - Limited view, non line of sight (NLOS)
 - Privacy
→ **Combination of multiple technologies** to overcome the limitation of individual ones
Outline

- Introduction
- Multimodal Localization
- Pervasive Application Platform
- Conclusion
System architecture

LOCALIZATION PLATFORM

- WIFI
- GPS
- RFID
- Pedometer

API → Database → Information Extraction Module → Calculating Module

precision limitation

results

Applications

results
Aggregation approach

- **Probability based**
 - For each point \((x, y, z)\), calculate aggregation probability \(\rho_\Sigma\)

- **Maximizing**

\[
\rho_\Sigma (x, y, z) = \bigg\{ \Omega \rho_i (x, y, z) e^{-\lambda_i t}, R_i \bigg\}_{i=1..n}
\]

- \(\Omega\): probability aggregation function
- \(n\): number of technologies
- \(\rho_i\): probability of technology \(i\) (sum, product,…)
- \(R_i\): reliability constant of technology \(i\)
- \(\lambda_i\): time decay constant of technology \(i\)
GPS

- Gaussian probability

\[
\rho_i (x, y, z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}{2\sigma^2}}
\]

- \((x_0, y_0, z_0)\): returned location by GPS
- \(\sigma\): function of accuracy by 3-sigma rule
RFID

- Fixed reader

- Gaussian probability

\[\rho_i (x, y, z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}{2\sigma^2}} \]

- \((x_0, y_0, z_0)\): reader location
- \(\sigma\): function of reader range by 3-sigma rule
WiFi

- Gaussian probability

\[\rho = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(r-r_0)^2}{2\sigma^2}} \]

- \(r_0 \): nominal distance from empirical propagation model
- \(\sigma \): function of \(r_0 \)
Pedometer

- **Gaussian probability**

\[
\rho_i (x, y, z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{d^2(x, y, z, x_0, y_0, z_0)}{2\sigma^2}}
\]

- \((x_0, y_0, z_0)\): nominal user location
- \(\sigma\): function of \((\text{step-length} \times \text{step-count})\)
- \(d\): Euclidean distance function
Historical & map information

- **Gaussian probability**

\[
\rho_i(x, y, z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{d^2(x, y, z, x_0, y_0, z_0)}{2\sigma^2}}
\]

- \((x_0, y_0, z_0)\): previous user location
- \(\sigma\): function of user speed by 3-sigma rule
- \(d\): distance function with environment map awareness
 - Shortest-path based
 - Impossible location avoidance
Test scenario: user 1
Test scenario: user 2
Localization results

- WiFi only:
 - [video]
- WiFi + RFID + pedometer:
 - [video]
- WiFi + RFID + pedometer + historical & environment info:
 - [video]
Outline

- Introduction
- Multimodal Localization
- Pervasive Application Platform
- Conclusion
Introduction

- **Pervasive computing has a major impact on the ways that people work, learn, entertain and interact**
 - Interconnected devices
 - Handheld devices
 - Wireless communications
 - User at the center of the interaction cycle

- **Every devices on the market nowadays**
 - are wirelessly controllable
 - have a wireless communication
 - small yet powerful
System architecture

- Environment modeling
- Visualization
- User/robot localization, tracking & navigation
- Device management
- User information collection
Device management

- Abstract layer for devices
- Allowing 2 modes
 - Physical mode with real devices
 - Simulation mode with virtual devices

Legends:
- Bulb, lamp
- Air conditioner
- Ceiling fan
- Television
- Security camera
- Wifi access point
- Central server
Environment modeling

- Unified environment model for
 - Localization
 - Signal attenuation for WiFi, RFID,…
 - Range information for cameras
 - Result validation
 - Result filter with map information
 - Path-finding and navigation
 - Visualization

- Using XML
Visualization using Google Maps (2D)

Wifi Access Point
ID: 1
SSID: MICA
Power: 5
MAC: 68:7f:74:e7:76:c9
Address: 172.16.120.81
Long: 105.84666721523
Lat: 21.004215717493
Alt: 31
Floor: 8th
Active: yes
Visualization using Google Earth (3D)
Visualization using standalone app (3D)
User/robot localization

- **Integration of multiple technologies**
 - WiFi
 - RFID
 - Camera
 - Bluetooth
 - Pedometer
 - Multimodal (combination of above technologies)

![Localization Platform Diagram]

- **LOCALIZATION PLATFORM**
 - WIFI → API → Database → Information Extraction Module → Calculating Module → Applications
 - GPS
 - RFID
 - Pedometer
 - precision limitation
 - results
 - results
 - results
User/robot navigation

- **Optimal path finding**
 - Shortest path
 - Aware of walls, floors, stairs,…
 - Personalized on the basis of user context
 - Collision avoidance in dynamic environment
Application: Smart Remote Control

- Based on
 - User location
 - Phone orientation

Legends:
- Bulb
- Air conditioner
- Television/screen
- Security camera
- Projector
- User location
User-Adaptive Device Control
► Video
Interaction with Drone

► Video
Summary

- **Probability based multimodal localization approach**
 - Indoor environment
 - To do:
 - Integration of camera-based technology
 - Extension to complex environments

- **Platform for development of pervasive applications**
 - Environment modeling and visualization
 - Integration of localization techniques and navigation
 - Sensor/device management and control: highly extensible with heterogeneous technologies
Thank you for your attention!