Text only  Print this page | E-mail this page| Add to favourites|Suggest similar pages
British Council home
 Green leaf © Khuong Hoang - istockphoto
'cubed' webzine
Un-Printing
Dyson Car Challenge
Thyme heals
Curry Power
New Adaptive Robots
Monitoring Olympic air-quality
Curry Power
Dyson Car Challenge
Un-Printing
Thyme heals
New Adaptive Robots
Evi knows what you want
Dance And Parkinson’s Disease
High speed light harvester
Secrets of Regeneration
Addiction: Nature or Nurture?
Smarter Parking
Silver lining
Anti-allergy parasite
Pancreas protector
Pop hit detector
Body Sensitive Cancer Treatment
Cheaper Smarter phones
Sports Training Tool
Light energy harvesting
Kitchen sink French
Clever cameras
Catalytic clothing
Smart surveillance
Super Broccoli
Kick and click
Pico secure access
Smartphone in Orbit
3D printed plane
Transmitting Data With Light
Brain cell bank
Energy for all seasons
Life-Saving Frogs
Dolphin Therapy
Rainbow money
In a Heartbeat
Restoring Speech
Safer Mosquitoes
Visualising Landscape Changes
Drumming Denim
Sphere TV
Driverless bus
Virtual London
University College London
Department of Physics and Astronomy
University College London
Dr Alexandro Olaya-Castro
cubed logo © British Council
Light energy harvesting

Capturing the sun
Solar power is one of the fastest growing renewable energy sources in the world. The challenge is to make it more efficient and robust. Dr Alexandra Olaya-Castro at UCL’s Department of Physics and Astronomy, is part of an international team using their understanding of the quantum mechanics of energy transfer in photosynthesis, to investigate how nature does it so efficiently.

Their work has highlighted the machinery of natural photosynthesis, where more than 100 million billion photons of light hit a leaf each second. The concept of light energy being transferred and regulated quickly, for the plant to grow, is helping scientists to design molecular ‘circuitry’. It is 10 times smaller than the thinnest electrical wire in computer processors for tiny molecular energy grids to capture, direct, regulate and amplify raw solar energy.

Quantum mechanical machinery
Olaya-Castro has been fascinated by the quantum mechanics of photosynthesis since 2008 and began her collaboration with Gregory Scholes, Graham Fleming and Rienk van Grondelle after meeting them at different conferences presenting their work on light harvesting.

Olaya-Castro explains, ‘we decided to gather all the research of several groups, including ours, trying to understand the photosynthesis machinery and present it as a set of methods to implement in artificial combining systems that can exploit sunlight.’ They are using the principles of quantum mechanics to describe how small particles like electrons and atoms behave in the process of photosynthesis. Working in a nanoscale, where a nanometre is one billionth of a metre, they are studying the pigments, such as chlorophyll whose molecular machinery capture light.

© Surrey Satellite Technology Ltd & University of Surrey

Sharing the energy
In photosynthesis each pigment in the plant acts collectively to capture more frequencies of light and that energy is transported to a particular molecule where it is converted into the chemical energy ATP (Adenosine triphosphate). Using the image of passing a ball around, Olaya-Castro explains that the theoretical breakthrough is that the energy transfer process is conceived as many hands on the ball at once, hence a sharing process rather than passing from one to the other.

From the technological viewpoint, she says, ‘one can explore this phenomenon to make the transfer of energy a process that is more efficient but also more controlled. This could be the basis of a new innovative energy technology.’ Now they aim to turn this into a blueprint for an artificial light harvesting system.

LearnEnglish Science activities
Why not do a language activity based on this cubed story, Light energy harvesting? You can double-click on any word on this page for a dictionary definition.

   Return to homepage

The United Kingdom’s international organisation for cultural relations and educational opportunities.
A registered charity: 209131 (England and Wales) SC037733 (Scotland)
Registered in Singapore as a branch (T09FC0012J) and as a charity (No 0768).
Our privacy and copyright statements.
Our commitment to freedom of information. Double-click for pop-up dictionary.

 Positive About Disabled People